MetaCluster 5.0: a two-round binning approach for metagenomic data for low-abundance species in a noisy sample
نویسندگان
چکیده
MOTIVATION Metagenomic binning remains an important topic in metagenomic analysis. Existing unsupervised binning methods for next-generation sequencing (NGS) reads do not perform well on (i) samples with low-abundance species or (ii) samples (even with high abundance) when there are many extremely low-abundance species. These two problems are common for real metagenomic datasets. Binning methods that can solve these problems are desirable. RESULTS We proposed a two-round binning method (MetaCluster 5.0) that aims at identifying both low-abundance and high-abundance species in the presence of a large amount of noise due to many extremely low-abundance species. In summary, MetaCluster 5.0 uses a filtering strategy to remove noise from the extremely low-abundance species. It separate reads of high-abundance species from those of low-abundance species in two different rounds. To overcome the issue of low coverage for low-abundance species, multiple w values are used to group reads with overlapping w-mers, whereas reads from high-abundance species are grouped with high confidence based on a large w and then binning expands to low-abundance species using a relaxed (shorter) w. Compared to the recent tools, TOSS and MetaCluster 4.0, MetaCluster 5.0 can find more species (especially those with low abundance of say 6× to 10×) and can achieve better sensitivity and specificity using less memory and running time. AVAILABILITY http://i.cs.hku.hk/~alse/MetaCluster/ CONTACT [email protected].
منابع مشابه
A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio
MOTIVATION With the rapid development of next-generation sequencing techniques, metagenomics, also known as environmental genomics, has emerged as an exciting research area that enables us to analyze the microbial environment in which we live. An important step for metagenomic data analysis is the identification and taxonomic characterization of DNA fragments (reads or contigs) resulting from s...
متن کاملTitle MetaCluster 4 . 0 : A novel binning algorithm for NGS reads andhuge number of species
Next-generation sequencing (NGS) technologies allow the sequencing of microbial communities directly from the environment without prior culturing. The output of environmental DNA sequencing consists of many reads from genomes of different unknown species, making the clustering together reads from the same (or similar) species (also known as binning) a crucial step. The difficulties of the binni...
متن کاملA Novel Abundance-Based Algorithm for Binning Metagenomic Sequences Using l-Tuples
Metagenomics is the study of microbial communities sampled directly from their natural environment, without prior culturing. Among the computational tools recently developed for metagenomic sequence analysis, binning tools attempt to classify the sequences in a metagenomic dataset into different bins (i.e., species), based on various DNA composition patterns (e.g., the tetramer frequencies) of ...
متن کاملTitle MetaCluster 4 . 0 : A novel binning algorithm for NGS reads
Next-generation sequencing (NGS) technologies allow the sequencing of microbial communities directly from the environment without prior culturing. The output of environmental DNA sequencing consists of many reads from genomes of different unknown species, making the clustering together reads from the same (or similar) species (also known as binning) a crucial step. The difficulties of the binni...
متن کاملTitle MetaCluster 4 . 0 : A novel binning
Next-generation sequencing (NGS) technologies allow the sequencing of microbial communities directly from the environment without prior culturing. The output of environmental DNA sequencing consists of many reads from genomes of different unknown species, making the clustering together reads from the same (or similar) species (also known as binning) a crucial step. The difficulties of the binni...
متن کامل